orthopaedics

CAL/CEMEX

The innovative reinforced bone substitute

Hybrid formula ß-TCP + PMMA

www.tecres.it

CALCEMEX THE INNOVAT

Osteoconductive, porous a

Thanks to the hybrid formula **B-TCP** -

Advantages of the B-TCP component: Osteoconductivity¹

Bone tissue gradually grows inside the biomaterial.⁶

The ß-TCP portion is gradually reabsorbed, leaving space for bone ingrowth.

= osteoid tissue

= bone tissue = bone cement

Osteoconductivity favoured by porosity

	Open porosity ²	Microporosity ³	Macroporosity ⁴
Obtained by	Special &-TCP + PMMA formula	Part of the fine powder that constitutes the material	Cavities up to 500 µm, obtained by the programmed dissolution of a pre-set number of ß-TCP granules
Features	Capillarity	Resorbability	Osteoconductivity
Effect	The special formula allows fluids to penetrate inside the material, to favour bone ingrowth.	The bone is able to rebuild in a more diffuse manner.	Macropores house the new bone tissue, allowing differentiation into lamellae.

Microporosity and macroporosity

= Newly-formed bone (histological image)⁶

Bone lamellae (microscopic analysis)⁶

IVE REINFORCED BONE SUBSTITUTE and mechanically superior

PMMA, it combines the advantages of both components.

Advantages of the PMMA component: **Resistance**

- It achieves maximum mechanical resistance immediately after polymerization.
- Unaltered resistance over time.
- ► Long-lasting support for bone tissue.
- Unchanged volume over time.

Superior performances

Calcemex boasts superior mechanical resistance to bone substitutes containing calcium sulphate (CS), calcium phosphate (CP) and hydroxyapatite (HA). * In-house tests performed according to ISO standard 5833.

Easy to use

Calcemex can either be applied manually or injected into deeper structures. Working time up to 5min. and 45 sec. ** It is radiopaque and therefore visible on X-rays.

Indications

Calcemex is a bone void filler intended for bony voids or defects that are not intrinsic to the stability of the bony structure.

Possible uses

Fractures of the distal radius Fractures of the proximal/distal tibia Calcaneal fractures Filling of cavities left by revision procedures Fractures of the femoral or distal femur Fractures of the proximal humerus Acetabular fractures Filling of cystic lesions

** applied by syringe

Ordering information

Code	Product	Details
13A6000	Cal-CEMEX	10 g.
ASA038A	Cal-CEMEX + Shakit	
ASA038B	Cal-CEMEX + Shakit + Xtruder	

Bibliography

1 Sbarbati A. In Vivo Study - Osseointegration at 52 Weeks. Dept. Neurological, Neuropsychological, Morphological and Motor Sciences, Human Anatomy and Histology Section, University of Verona, Italy.

- 2 Le Huec JC, Schaeverbeke T, Clement D, Faber J, Le Rebeller A. Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. *Biomaterials.* 1995, Jan; 16(2): 113-8.
- 3 Larsson S, Hannink G. Injectable bone-graft substitutes: current products, their characteristics and indications, and new developments. Injury. 2011, Sep; 42 Suppl 2: S30-4.
- 4 Karageorgiou V, Kaplan D. **Porosity of 3D biomaterial scaffolds and osteogenesis.** *Biomaterials. 2005, Sep; 26(27): 5474-91. Review.*
- 5 Drosos GI et al. Mechanical characterization of bone graft substitute ceramic cements. Injury, 2012, Mar; 43(3): 266-71.
- 6 Bartolozzi P et al. **Studio sperimentale di un nuovo cemento osseo poroso, osteoinduttivo e osteoconduttivo.** *Dept. Orthopaedics, University clinic of Verona, Italy*
- 7 Ohman C et al. Mechanical testing of cancellous bone from the femoral head: experimental errors due to off-axis measurements. J Biomech. 2007; 40(11): 2426-33.

TECRES S. p. A. Via A. Doria, 6 - Sommacampagna - Verona (Italy) tel. +39 045 92 17 311 - fax +39 045 92 17 330 www.tecres.it - info@tecres.it distributed by

www.tecres.it